sexta-feira, 30 de novembro de 2018

conforme aumenta as energia e pricipalmente a temperatura, também aumenta progressivamente as instabilidades entre todos os fenômenos, sendo variáveis conforme as categorias das energias, fenômenos e estruturas.

isto acontece em reconexão eletromagnética, emaranhamentos e tunelamentos, entropias, potencial eletrostático, difrações, refrações, condutividade e superfluidez, mudanças de estados físicos, estados quãntico e estados categoriais de energias, fenômenos e estruturas e em relação ao sistema decadimensional Graceli.


em 1938, a descoberta da superfluidez do hélio-4, na temperatura aproximada de 2,19 K. Também em 1938, os físicos norte–americanos Hans Albrecht Bethe (1906-2005; PNF, 1967) (de origem alemã) e Charles Louis Critchfield (1910-1914) anunciaram a possível existência do 2He3, cuja descoberta oficial só foi anunciada em 1939, no ano em que eclodiu a Segunda Guerra Mundial. Em virtude dessa Guerra, as pesquisas sobre esse raro isótopo do He só se intensificaram depois de seu término, em 1945, como subproduto do programa de produção de bombas atômicas e nucleares (ver verbete nesta série). Assim, dentro desse programa, esse isótopo foi obtido pelo decaimento beta do trítio (1H3 → 2He3 + e-, em notação atual), nas experiências realizadas, em 1949 (Physical Review 75, p. 1103), por E. R. Grilly, E. F. Hammel e S. G. Sydoriak. Logo em 1950 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 20, p. 919), o físico russo Isaak Yakovlevich Pomeranchuk (1913-1966) sugeriu que temperaturas baixas poderiam ser obtidas solidificando o 2He3 por compressão adiabática do estado líquido desse isótopo do He. Observe-se que, nessa ocasião, ainda não havia sido obtido esse estado líquido. Segundo Pomeranchuk, em baixas temperaturas, o hélio-3 líquido, por possuir spin fracionário em seu núcleo composto de dois prótons (p=1H1) e um nêutron (0n1), se tornaria um fluido fermiônico degenerado, com sua entropia (S) dependendo linearmente da temperatura (T). Esse processo de resfriamento ficou conhecido como efeito Pomeranchuk ou resfriamento Pomeranchuk (vide verbete nesta série). Logo em 1951, o físico alemão Heinz London (1907-1970) apresentou a ideia de que temperaturas estáveis, na região de milikelvins (1 mK = 10-3 K), poderiam ser obtidas usando-se um novo tipo de refrigerador – refrigerador de diluição -, baseado nas propriedades das misturas de 2He2He4. Mais tarde, em 1956 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 30, p. 1058), o físico russo Lev Davidovich Landau (1908-1968; PNF, 1962) formulou sua famosa teoria do líquido quântico de Fermi para explicar as propriedades do hélio-3 líquido

1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
relatividade categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

Nenhum comentário:

Postar um comentário